
www.manaraa.com

Challenges Calibrating Hydrology for Groundwater-Fed
Wetlands: a Headwater Wetland Case Study

R. Ramesh1
& L. Kalin1

& M. Hantush2
& M. Rezaeinzadeh3

& C. Anderson1

Received: 28 September 2018 /Accepted: 10 October 2019
# Springer Nature Switzerland AG 2020

Abstract
This study aims to adapt the Soil and Watershed Assessment Tool (SWAT), a ubiquitously used watershed model, for ground-
water dominated surface waterbodies by accounting for recharge from the aquifers. Using measured flow to a headwater slope
wetland in Alabama’s coastal plain region as a case study, we present challenges and relatively simple approaches in using the
SWAT model to predict flows from the draining watershed and relatively simple approaches to model groundwater upwelling.
SWAT-simulated flow at the study watershed was limited by precipitation, and consequently, simulated flows were several times
smaller in magnitude than observed flows. Thus, our first approach involved a separate stormflow and baseflow calibration which
included the use of a regression relationship between observed and simulated baseflow (ENASH = 0.67). Our next approach
involved adapting SWAT to simulate upwelling groundwater discharge instead of deep aquifer losses by constraining the range of
deep losses, βdeep parameter, to negative values (ENASH = 0.75). Finally, we also investigated the use of artificial neural networks
(ANN) in conjunction with SWAT to further improve calibration performance. This approach used SWAT-calibrated flow,
evapotranspiration, and precipitation as inputs to ANN (ENASH = 0.88). The methods investigated in this study can be used to
navigate similar flow calibration challenges in other groundwater dominant watersheds which can be very useful tool for
managers and modelers alike.
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1 Introduction

The biogeochemical state or nutrient content of a drainage
network is dictated by that of its headwaters which form
the beginning of water movement from uplands into

streams [6]. Headwater streams also comprise the highest
proportion of stream miles [17, 32, 33], which explains
their disproportionately high influence in the drainage [6,
32, 33]. Wetlands of headwater streams provide important
ecosystem services such as habitat for aquatic life; nutrient
uptake and cycling; clean drinking water; downstream
temperature regime regulation; and reduce loads of nitro-
gen, phosphorous, and sediment to coastal waters [32, 33,
35]. As a class, wetlands on lower order streams have
higher capacity for water quality mitigation from nonpoint
source pollution since channel flow in higher order down-
stream reaches does not come in contact with the flood-
plain wetland surface very often (due to infrequent
overbank flooding)—this calls for greater scrutiny of wet-
land alterations on low-order streams [6, 32].

Forested, groundwater-fed headwater slope wetlands occur
throughout the Alabama–Mississippi coastal plain at the head-
waters of coastal creeks [27]. Given their density on the land-
scape and their location at the interface of uplands and coastal
creeks, these wetlands are likely to be extremely important in
ameliorating runoff. However, headwater streams and associ-
ated wetlands have been severely altered in the Southeast, and
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data from headwater wetlands in the region are sparse [32].
Though watersheds draining into headwater wetlands tend to
be small (< 1km2 [9]), understanding the impact of human
activities in these small headwater watersheds is critical to
the restoration and management of headwater slope wetlands.
In order to predict watershed impacts on headwater slope wet-
lands, models have to be applied and calibrated.

However, modeling involves several challenges because
(1) models are essentially simpler representations of natural
systems since it is not possible to account for the entire extent
of real world complexity and (2) models are defined by the
values of their parameters. This can cause even highly com-
plex models to fail in simulating watershed processes.
Disparities between surficial and ground watershed size in
small watersheds can also introduce challenges to the model
calibration process. Since ground watersheds cannot be ob-
served from the land surface, defining their extent can be
challenging [43]. Additionally, groundwater flow systems of
different magnitudes may be superimposed on one another, or
the groundwater divides themselves may move in response to
dynamic recharge and discharge conditions [43]. These asso-
ciations are further influenced by watershed size and its loca-
tion within the groundwater flow system. For small water-
sheds located on terrains with high permeability and low re-
gional topographic relief, as encountered in coastal Alabama,
ground watershed area contributing water to the watershed
can extend beyond the boundaries of the surficial watershed
unless the watershed is situated on groundwater divides [43].

Subsurface processes are also difficult to observe or repre-
sent in watershed models because of the high level of soil/
aquifer heterogeneity and the lack of data to characterize
hydrogeological systems and their responses [29]. While the
parameters of these processes maybe measured, they are pro-
hibitive for use in larger watershed modeling since these are
usually point scale measurements—for use in models, these
may be averaged or used at grid scales, which are larger than
the scale of variations of these processes and as such do not
capture catchment heterogeneity [29]. While there is consen-
sus about the holistic existence of surface water and ground-
water systems, these integrated systems are not very well de-
veloped in models [38, 44].

Awide variety of models are utilized nowadays to understand
hydrological andwater quality responses to land use changes and
environmental alterations. Watershed scale models such as the
Soil and Watershed Assessment Tool (SWAT) have combined
recent advancements in computational power with the use of
Geographic Information Systems (GIS) technology to establish
semi- to fully distributed hydrologic models to better represent
physical processes governing complex natural systems. Since
SWAT allows for manipulations of land use, soils, slope, and
climate on watershed scales, it has wide applicability in deter-
mining impacts of different land use practices, climate, etc. on
hydrological and water quality responses of a diversity of water

bodies at multiple scales [20]. SWAT also has provisions for
automated parameter calibration through the use of SWAT
Calibration and Uncertainty Program, or SWAT-CUP, which en-
ables sensitivity analysis, calibration and uncertainty analysis for
SWAT models [1]. However, SWAT is typically applied to stud-
ies where flows are a fraction of precipitation over the watershed;
it is structured to compute deep aquifer losses as opposed to
recharge from deep aquifers. In areas of low topographical relief
such as in low coastal plain regions, extensive belowground
watersheds can result in localized upwelling zones creating high
baseflows which may cause overall flows to exceed precipitation
over the surficial watershed—a situation that SWAT has not been
used to address to our knowledge. This study aims to adapt
SWAT for such groundwater-dominated surface waterbodies by
accounting for recharge from the aquifers. Using measured flow
to a headwater slopewetland inAlabama’s coastal plain region as
a case study, we present challenges and relatively simple ap-
proaches in using the SWAT model to predict flows from the
draining watershed and relatively simple approaches to model
groundwater upwelling.

The coastal plain watershed in question (as delineated by
SWAT) is small, 0.49 km2, and drains into a slope wetland at
the headwaters of Owen’s Bayou in Foley, AL. In order to
predict the nutrient loadings to the wetland, daily streamflow
estimates from this watershed were needed. However, mea-
sured flow data was sparse and had significant gaps. A model-
ing approach therefore was used to fill these gaps. Flow, esti-
mated at a discernible surface water inlet to the headwater
slope wetland, was most peculiar in that it exceeded total
precipitation over the watershed. Increasing the delineated
watershed area to twice its current extent still did not alter this
imbalance. Although not common, wetland hydrology can be
dominated by groundwater discharge as a major source, which
in some areas can be greater than the surface flow component
(e.g., [43]). This establishes the need for models that can sim-
ulate groundwater discharge (upwelling) contributed by deep
regional aquifers. However, the SWAT model has limited ca-
pability to accurately predict groundwater interactions, espe-
cially groundwater discharge from deep regional aquifers. In
order to simulate the hydrology of such complex ecosystem,
an integrated version of the SWAT model linking SWATwith
groundwater model MODFLOW (SWAT-MODFLOW) is
currently available, which links groundwater outputs from
SWAT as inputs for MODFLOW [10]. However, this model-
ing approach is resource intensive (data, computational time
and labor) and requires detailed hydrogeologic site character-
ization, all of which may be too high of an investment for
project goals in a small watershed. Moreover, a separate
MODFLOWmodel needs to be developed at appropriate spa-
tial resolutions in order to be linked with SWAT. In the ab-
sence of any groundwater observations or associated aquifer
data, there is no assurance that a highly complex model will
yield better results. Instead, can a simpler approach be
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implemented using SWAT only to model watershed flows
when observed flows exceed precipitation in the watershed?
Indeed, SWATcan be adapted as shown in this study to model
groundwater upwelling in the absence of more detailed
hydrogeologic data.

Data-driven approaches such as the use of artificial neural
networks (ANN) are other extensively used tools in hydrology
modeling [28, 31, 39]. ANNs are black box models which can
be trained to learn the relationships between inputs and outputs
(including highly complex, multidimensional, nonlinear rela-
tionships) in a process without actually needing to delve into
the physical characteristics of the process [28, 31, 39]. ANNs,
therefore, provide a useful alternative for streamflow predic-
tions while steering clear of issues affecting process-based
models such as SWAT due to reasons such as large spatial scale
and complex but poorly understood processes (as described in
previous paragraphs). ANNs may also be applied together with
a watershed model to enhance streamflow prediction capabili-
ties. A few studies have compared the ability of SWAT and
ANN in predicting streamflow [15, 39, 40], but only one study
to our knowledge has tested the utility of coupling SWAT and
ANN for improved streamflow prediction [28]. In [28], authors
showed that SWAT–ANN coupling can predict daily
streamflow in ungauged basins better than the standalone
SWAT model. Our study also aims to add to the body of liter-
ature using ANN models in conjunction with SWAT to im-
prove hydrological prediction ability.

The overarching goal of this paper is to present three ap-
proaches to predict flow in groundwater-dominated small head-
water watersheds, as relatively simple alternatives to more com-
plex models that have strong surface/groundwater coupling. The
specific objectives are as follows: (1) to explore hydrological
trends of the watershed outflows draining into a headwater slope
wetland in coastal Alabama and (2) to apply different approaches
of hydrology calibration using SWAT including applying an op-
timized adjustment factor to SWAT-calibrated baseflow, adapting
SWAT to simulate groundwater discharge to the study wetland,
and developing ANN model with inputs from SWAT to further
improve calibration. The study will yield useful modeling ap-
proaches in SWAT to model flow in watersheds dominated by
groundwater input as an alternative to more complex
groundwater–surface water interaction models. Additionally,
the study explores the use of artificial neural networks (ANN)
in improving flow calibration.

2 Materials and Methods

2.1 Site Description and Hydrology Monitoring

Data for this study was collected from a discernible inlet
to a headwater slope wetland in Baldwin County, AL:
New Foley wetland (30.354°, − 87.631°) located at the

headwaters of a smaller tributary to Owen’s bayou (Fig.
1) within the city of Foley. Headwater slope wetlands in
coastal Alabama occur above and alongside first-order
streams—they are typically groundwater fed and exist as
braided channels along a gradual slope [27, 37]. Wetland
soils are generally alluvial [4, 21] and remain saturated or
close to saturated throughout the year since these wet-
lands have fairly stable water levels that are at or slightly
below the ground surface [27]. Land use in the watershed
draining to the New Foley wetland is predominantly res-
idential. A prominent feature of the draining area is a
stormwater lake that drains into the NF wetland (Fig. 1).
The study area is characterized by hot, humid summers,
and mild winters with average annual temperatures of 19
°C and precipitation of 170 cm mostly evenly distributed
throughout the year with peaks occurring in early spring
and midsummer [4, 27, 34].

Hydrological data was collected at the study wetland
from August 2013 to December 2014. Stage was mea-
sured every 15 min using InSitu Mini-Troll 500 pressure
transducers and data loggers at a discernible inlet to the
wetland. Surface water velocity and depth were measured
at the site at twelve different instances for every 10 cm
across the channel width and used to calculate average
surface water discharge using the velocity–area method
(based on USGS stream gauging guidelines, [30]). The
surface water velocity was measured by using a Marsh-
McBirney, Inc. Flo-Mate Model 2000 Portable Flowmeter.
Discharge was associated with transducer stage reading
from the nearest time of velocity measurement to develop
stage-discharge relationship.

A modified Manning’s equation was used to generate esti-
mates of discharge as a function of measured stage.Manning’s
formula can be described as

Q ¼ 1

n
AR

2
3

ffiffiffiffiffi
S0

p
ð1Þ

Q ¼ kAR
2
3 ð2Þ

where Q = flow (m3/s), R = hydraulic radius (m), S0 =
friction slope, estimated as bedslope, n = Manning’s
roughness coefficient, A = channel cross-sectional area,
and k ¼ ffiffiffiffiffi

S0
p

=n. From channel dimensions, channel
cross-sectional areas, wetted perimeters, and hydraulic ra-
dius were calculated and applied to stage (h)–discharge
(Q) data to calculate k for each data point from Eq. (2),
and subsequently, a k–h relationship was developed
through regression. This k–h relationship was combined
with Eq. (2) to convert the measured stage time series at
15-min time intervals into discharge time series, which
were then used to estimate average daily flow to the wet-
land through the discernible surface water inlet.
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2.2 SWAT and SWAT-CUP Model Descriptions

The Soil and Watershed Assessment Tool (SWAT) is a
widely used watershed scale, process-based hydrologic
model that was developed by the US Department of
Agriculture [3, 7]. It can operate on hourly, daily, monthly
or annual scales and has been used effectively for assessing
nonpoint source pollution problems at different scales and
environmental conditions all over the world [7]. SWAT
divides the watershed into multiple subwatersheds which
are further divided into hydrologic response units or
HRUs—these represent percentages of the subwatershed
area and are not identified visually within a SWAT simula-
tion [8]. SWAT defines multiple HRUs each having unique
land use, soil and slope combinations. Hydrology is sepa-
rated into the land phase and the routing phase of the hy-
drologic cycle–water to the main channel is determined by
the land phase of the hydrologic cycle while the routing
phase determines water from the channel network to the
outlet. SWAT uses either the Conservation Service Curve

number (CN) method or the Green and Ampt infiltration
method to estimate surface runoff. Three methods are in-
cluded for evapotranspiration estimation based on the
number of inputs required—the Penmen–Monteith meth-
od, the Priestly–Taylor method and the Hargreaves meth-
od. Surface, lateral subsurface, and baseflow waters
reaching the stream channels are routed either through
Muskingum or variable storage coefficient method. The
water budget is developed for each HRU, and then aggre-
gated for the subbasin by a weighted average [16].

Water enters groundwater primarily through infiltration/
percolation from land surfaces and seepage from surface
water bodies [26]. SWAT simulates two aquifers within
each subbasin, a shallow aquifer which is unconfined and
contributes baseflow to the reach or main channel of the
subbasin, and a deep confined aquifer which contributes to
streamflow somewhere outside the watershed. Below we
describe the groundwater component of the SWAT model
in more detail given its significant contribution to the study
system.

Owen’s Bayou

Temperature station

0       4       8 Kilometers

0                   0.32 Kilometers

Fig. 1 The head watershed used
for this study drains into a
headwater slope wetland that
feeds a tributary to Owens’s
bayou. The watershed area is 0.49
km2 with ~ 57% classified as
urban
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SWAT calculates baseflow contribution to a channel on a
given day as

Qgw;i ¼ Qgw;i−1:exp −αgw:Δt
� �

þ wrchrg;sh: 1−exp −αgw:Δt
� �� �

; if aqsh > aqshthr;q

ð3Þ

Qgw;i ¼ 0; if aqsh < aqshthr;q ð4Þ

where Qgw, i and Qgw, i − 1 are baseflow or groundwater flows
into the main channel on days i and i − 1 respectively (mm
H2O), Δt is the daily time step (Δt = 1 day), wrchrge, sh is the
amount of recharge entering the shallow aquifer on day i (mm
H2O), aqsh is the amount of water stored in the shallow aquifer
at the beginning of day i, aqshthr, q is the threshold water level
in the shallow aquifer for groundwater contribution to the
main channel to occur (mm H2O), and αgw is the baseflow
recession constant (a direct index of groundwater flow re-
sponse to changes in recharge).

The amount of recharge entering the shallow aquifer, w-
rchrge, sh, is a portion of the total aquifer recharge wrchrg after
accounting for percolation to the deep aquifer which is lost
from the system. This is represented as

wrchrge;sh ¼ wrchrg−wdeep ð5aÞ

where wrchrg is the total aquifer recharge on day i (mm
H2O), and wdeep is the amount of water percolating from the
shallow aquifer to the deep aquifer on day i (which is essen-
tially lost since it does not contribute to flows within that
subbasin) (mm H2O); it is given by

wdeep ¼ βdeep wrchrg ð5bÞ

where βdeep is the aquifer percolation coefficient and
assigned default positive values in the SWAT model.

Default parameter ranges for βdeep in the SWAT model
ensureswdeep ≥ 0 mm/day, i.e., SWATonly assumes water loss
from the shallow aquifer to the deep aquifer. The reverse sce-
nario of discharge from the deep aquifer into the shallow aqui-
fer is not considered in SWAT. However, by constraining the
range of default values of βdeep to negative values, SWAT can
be adapted as shown later to simulate recharge to the shallow
aquifer from the deep aquifer.

Aquifer recharge, wrchrg, is comprised of water percolating
past the lowest depth of the soil profile and bypass flow
flowing through the vadose zone. An exponential decay
weighting function is used tomodel recharge to the aquifers as

wrchrg;i ¼ 1−exp −
1

δgw

� �	 

wseep þ exp −

1

δgw

� �
wrchrg;i−1 ð6Þ

where wrchrg, i is the amount of recharge entering aquifers
on day i (mm H2O), δgw is the delay time or drainage time of
the overlying geologic formations which has been shown to
remain somewhat constant within the same geomorphic area,

wseep is the total amount of water exiting the bottom of the soil
profile on day i (mm H2O), and wrchrg, i − 1 is the amount of
recharge entering the aquifers on day i − 1 (mm H2O).

Parameters for the SWAT model can be calibrated through
manual and automatedmethods—the former involves running
SWATmodel with manually modified deterministic values for
parameters, while the latter allows the user to run SWAT
models using parameters propagated within a range of speci-
fied feasible upper and lower values for parameters. An auto-
mated calibration software called SWAT Calibration and
Uncertainty and Program (SWAT-CUP) was developed spe-
cifically to be usedwith SWAT in order to report uncertainty in
the results by propagating parameter uncertainties [1]. Various
SWAT parameters are identified for auto-calibration, through
initial manual calibration as well as from literature. Parameter
ranges are then propagated by Latin hypercube sampling
using the SUFI-2 algorithm in SWAT-CUP [1]. Propagating
parameter uncertainties results in uncertainties in the outputs
which are represented as 95% confidence intervals of proba-
bility distributions—calculated at 2.5% and 97.5% levels of
the cumulative output distributions—also known as the 95%
prediction uncertainty or the 95PPU. The goal of the SWAT-
CUP calibration process is to have the 95PPU envelop most of
the observations (measured data). The fit between simulation
results, i.e., the 95PPU, and the observations is represented by
two main factors—the P-factor and R-factor. The P-factor
represents the percentage of observations enveloped by the
95PPU, and the R-factor is the thickness of the 95PPU band.
No firm values exist for these values—for flow, a P-factor ≥
0.7 and R-factor ≤ 1 are considered acceptable [1]. A few
iterations (usually < 5) of multiple simulations (300–500 de-
pending on the time it takes) are performed in SWAT-CUP,
where initially the user starts out with larger parameter ranges
which get smaller with each iteration. Various criteria such as
coefficient of determination (R2), Nash–Sutcliffe efficiency
(ENASH) [24], and bias ratio (RBIAS) [36] are used to measure
the closeness of the model output and the observed data.

2.2.1 SWAT and SWAT-CUP Model Setup and Data

The SWAT model was developed and applied for the water-
shed draining into the New Foley wetland at the discernible
surface water inlet to the wetland. We used SWAT version
SWAT-2012 through the ArcSWAT interface in ArcGIS 10.0
for all SWAT simulations. All the GIS data required for
ArcSWAT setup was downloaded from the USGS’s online
Seamless Data Warehouse (https://datagateway.nrcs.usda.
gov). The watershed boundaries for the wetland were
delineated by ArcSWAT using elevation data obtained from
the National Elevation Dataset (NED) DEM with a resolution
of one-third arc-second (10 m pixels) developed byUSGS and
hydrography data from the National Hydrography Dataset
(NHD). Hydrography was further modified and digitized to
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include headwaters with channel extensions to improve wa-
tershed delineation and streamflow routing in ArcSWAT [2].
The delineated watershed contributing to the discernible wet-
land inflow where the transducer was located had an area of 0.
49 km2 (49 ha).

Land use data was obtained from the 2011 National Land
Cover Dataset (NLCD), and soil parameters were derived
from the county level Soil Survey Geographic (SSURGO)
dataset. Some classifications in the NLCD layer were edited
slightly to reflect current land use in the watershed. About
57.2% of the watershed area was classified urban. Slopes were
divided into 3% classes (1–3%, 3–6%, etc.). Threshold values
of 5%were used for land use, soils, and slope definition. Daily
maximum and minimum temperatures for the study period
were available from a station in Robertsdale (station
GHCND: USC00016988) in Baldwin County (Fig. 1). Daily
precipitation was obtained from NEXRAD data for a period
from 2008 to 2014, and the Hargreaves method was used for
calculation of potential evapotranspiration.

The study area received very high rainfall of ~ 380 mm
between April 28 and May 1, 2014, and fluctuations in trans-
ducer data after these dates were highly variable and exagger-
ated. We believe that the sudden extreme rainfall may have
affected the functioning of the transducer and caused it to
produce faulty data. Consequently, these dates were excluded
from the calibration. Since the duration of observed data was
so small (< 1 year), we did not split the data to perform
validation—instead all the data was used for calibration alone.
While the small duration of observed data is an important
limitation to the study, it is not detrimental to the overall ob-
jectives of the study which are to present different approaches
of dealing with challenging hydrology calibrations in a head-
water watershed with extensive groundwater inputs.

Previously calibrated parameter values reported in [42] for
Magnolia River watershed, which is situated adjacent (in the
northeast side) to the Wolf Bay watershed of which the study
watershed is a part (Fig. 2), were applied as starting values in
the SWAT model for the study wetland (Table 1). Since the
Magnolia River andWolf Baywatersheds neighbor each other
and have similar physical characteristics (soils, slope, geolo-
gy), SWAT parameters calibrated for the Magnolia river wa-
tershed can be transferred to the Wolf Bay watershed [42].
Literature has shown that model simulations require a long
warm-up period to accurately represent conditions being sim-
ulated such as antecedent moisture and initial groundwater
table height which can influence predictions of streamflow
and baseflows [5, 13, 42]. The SWAT model was run for 7
years, with a warm-up period of 5 years (2008–2012) prior to
the 2-year period (2013–2014) of which the study period
(August 10, 2013–April 28, 2014) is a part, to accurately
initialize SWAT parameters.

SWAT-CUP requires that the default simulation (simulation
that is fed into SWAT-CUP for calibration) to not be too

different from observed data. For this reason, some manual
calibration was done (in addition to applying parameter values
from Table 1) to ensure some parity between simulated and
observed flows at the wetland inlet. Procedures explained in
[25] and personal communication with different SWAT users
were used to adjust parameters for calibration. For baseflow-
dominated areas, parameters such as groundwater delay
(GWDELAY), deep aquifer recharge coeff ic ient
(RCHRGE_DP), and baseflow alpha factor (ALPHA_BF)
were adjusted, along with SCS curve number (CN2). Model
parameters were calibrated at daily timescales for flow.
Following manual calibration, around sixteen parameters
influencing different aspects of surface and subsurface flows
were chosen for SWAT-CUP auto-calibration from literature
(Table 2). SWAT-CUP 2012 version 5.1.6 was used to conduct
auto-calibration runs.

2.3 Coupled SWAT–ANN Model Description and Setup

While hydrological models may be calibrated to some satis-
fying measure of performance ability, they may not always
preserve all aspects of the hydrograph, i.e., not all simulated
flow values will correspond to observed values [41]. For ex-
ample, a model might have a reasonably high value of the
objective function but fails in adequately capturing high or
low flow extremes which may be critical in predicting specific
ecological responses [41]. One way of dealing with this lim-
itation involves a stepwise coupled approach by first calibrat-
ing with SWAT through a process-based hydrological under-
standing of the system followed by black box models such as
artificial neural networks (ANN) to improve the former
calibration.

ANNs are black box models where detailed understanding
of the internal processes is not required to develop relation-
ships between the inputs and outputs [12, 28, 39]. Many kinds
of ANN exist, but the feed forward ANN is used most com-
monly in hydrological applications and consists of several
nodes organized in layers. Between the input and the output
layers, a number of user-defined hidden layers exist where
most of the processing takes place. Input data is fed into the
input layer, which communicates with nodes in the hidden
layer(s), which then links to an output layer where the re-
sponse of the ANN model is received [39]. A process called
training corresponds with the calibration process in traditional
models [39]. During training, the inputs together with the
desired response (target response/observed data) are fed to
the ANN model. The ANN model process is started with an
initial random choice of weights, input data, and target re-
sponse, and the model is allowed to compute responses which
are compared with the desired response: this process is repeat-
ed in an iterative manner, each time adjusting the weights,
until the desired subjective stopping criterion is reached.
Training aims to minimize a predefined error function by
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searching for a set of connection strengths and threshold
values so that ANN outputs are close or equal to the desired
response/target [14, 39]. Inputs are usually normalized to
avoid differences in magnitudes and variance from interfering
with the training process [39].

The size of the hidden layer and the number of neurons are
important considerations in ANN development. There is no
singular setup structure; rather, trial and error is used to estab-
lish the optimum number of hidden layers and neurons [12].
We varied the number of neurons in the hidden layer from 5 to
10 but restricted the number of hidden layers to 1 to avoid
over-fitting with such limited data. We also used two different
transfer functions to translate input signals to output signals—
the log-sigmoid and the hyperbolic tangent sigmoid functions
[28]—and picked the one which gave better results. We used
SWAT-calibrated streamflow at the inlet to the wetland (cali-
brated to observed flow at that location) together with

precipitation and potential evapotranspiration (PET) calculat-
ed by the Hamon method [11] as inputs to the ANN model.
The Hamonmethod calculates daily PETas a function of daily
mean air temperature and hours of daylight and has been
shown to work favorably in the southeastern USA [19, 28].
Here we checked to see if coupling ANN with SWAT-
calibrated streamflow would yield better calibration results
than calibrating with SWAT alone. We used MATLAB
R2016a version 9.0.0 for model construction and
implementation.

2.4 Performance Measures and Evaluation Criteria

Model performances were measured using metrics such as
coefficient of determination (R2), Nash–Sutcliffe efficien-
cy (ENASH) [24], and bias ratio (RBIAS) [36]. The coeffi-
cient of determination (R2) is a measure of linear

Fig. 2 Yellow star represents the
location of study watershedwhich
is part of the Wolf Bay watershed.
The Magnolia River watershed is
located adjacent to the Wolf Bay
watershed on the northeast side.
The image is borrowed from [42]
to show the spatial proximity of
Magnolia River watershed to the
study watershed
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correlation between the two quantities and explains the
fraction of variance in the observed data explained by
the model, while the Nash–Sutcliffe efficiency statistic
(ENASH) reflects the correspondence between observed
and simulated data on 1:1 line. Contrary to R2, which is
varies between 0 and 1, ENASH values vary from – ∞ to 1
where 1 corresponds to the perfect model. The bias ratio
(RBIAS) measures the degree to which the forecast is
under- or overpredicted—negative values indicate
underprediction and positive values indicate overpredic-
tion [36].

R2 ¼
∑
i

Qobs;i−Qobs

� �
Qsim;i−Qsim

� �� �2

∑
i

Qobs;i−Qobs

� �2
∑
i

Qsim;i−Qsim

� �2

ENASH ¼ 1−
∑
i

Qobs;i−Qsim;i

� �2

∑
i

Qobs;i−Qobs

� �2

RBIAS ¼ Qsim−Qobs

Qobs

where Q is a variable of interest (e.g., discharge), Q is the
average of variable Q over a specific period, and obs and sim
indexes represent observed and simulated data, respectively.

Model performances for flow simulations were assessed
based on the guidelines presented by [22] for assessments of
flow and nutrients at monthly time scales. Since our study is
assessed at a daily time scale, the modified relaxed constraints
in [14] were adopted for the purposes of this study:

Table 2 Parameters chosen from manual calibration and literature for inclusion in SWAT-CUP

Parameter Parameter description Location

CN2 Initital SCS runoff curve number for moisture condition II .mgt

ALPHA_BF Baseflow alpha factor (1/days) .gw

GW_DELAY Groundwater delay time (days) .gw

GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) .gw

GW_REVAP Groundwater revap coefficient which controls rate of water movement from shallow aquifer to the root zone .gw

ESCO Soil evaporation compensation factor .hru

CH_N(2) Manning’s “n” value for the main channel .rte

CH_K(2) Effective hydraulic conductivity in main channel alluvium (mm/hr) .rte

ALPHA_BNK Baseflow alpha factor for bank storage (days) .rte

SOL_AWC() Available water capacity of the soil layer (mm H2O)/mm soil) .sol

SOL_K() Saturated hydraulic conductivity (mm/hr) .sol

SOL_BD() Moist bulk density (Mg/m3 or g/cm3) .sol

RCHRG_DP Deep aquifer percolation fraction .gw

Table 1 Calibrated parameters
for Magnolia River watershed,
Baldwin County, AL from [42]

Parameters Default Wang and Kalin (2010)
Magnolia River watershed

CN2 Varies +3a

ESCO 0.95 1

GW_
DELAY

31 –

GWQMN 0 –

GWREVAP 0.02 –

SURLAG 4 1

SOL_AWC Varies − 0.01a

REVAPMN 10 500

ALPHA_BF 0.048 0.015

CH_N2 0.014 0.114

a Plus and minus sign indicate that parameter values are increased/decreased by adding/subtracting the given
amount
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Very Good: ENASH ≥ 0.7; |RBIAS| ≤ 0.25
Good: 0.5 ≤ ENASH < 0.7; 0.25 < |RBIAS| ≤ 0.5
Satisfactory: 0.3 ≤ ENASH < 0.5; 0. 5 < |RBIAS| ≤ 0.7
Unsatisfactory: ENASH < 0.3; |RBIAS| > 0.7

3 Calibration Approaches

The hydrology at the watershed outlet (inlet to the wetland)
showed distinctive trends consistent with ecological under-
standing of flow as a function of urbanization and coast prox-
imity. As is seen in Fig. 3, observed flow had consistently high
baseflow contribution. For the study period, observed flow at
the watershed outlet ranged from 0.048 to 0.95 m3/s and av-
eraged around 0.15 m3/s.

SWAT simulations, after transferring parameters from the
adjacent Magnolia River watershed, failed to simulate the
magnitude of observed flows (R2 = 0.52, ENASH = − 0.57,
RBIAS = − 0.82; Fig. 3). The figure indicates that the model
simulations were able to capture trends but disproportionately
(and consistently) underpredicts the magnitude. The water-
shed received a total of around 1726 mm of precipitation
during the study period. It was, however, interesting to note
that the sum of daily watershed outflows during this period
equaled 6599 mm (depth calculated for ArcSWAT delineated
watershed), which exceeded precipitation by a factor of 3.8,
i.e., the percentage of precipitation converted to streamflow
was 380%. So where is all this excess water coming from?
The only logical conclusion is that there appears to be an
upward flow to the shallow aquifer from the deeper aquifer
contributing to high baseflows. SWAT assumes coinciding
watershed and ground watershed areas and allows for

groundwater losses out of the watershed through deep losses
unless negative βdeep values are used. Thus, the remainder of
this section is focused on the different approaches we used to
calibrate a system with this unique hydrological behavior. As
mentioned previously, extreme rainfall from April 28, 2014
seemed to have affected transducer functioning causing faulty
and highly exaggerated fluctuations in the data—consequent-
ly, dates following April 28, 2014 were excluded from the
calibration. The following calibration approaches are present-
ed through a flowchart in Fig. 4.

3.1 Approach 1—Separate Calibration of Baseflow
and Surface Runoff

In this approach, we followed a two-step calibration process
where we separately calibrated baseflow trend and surface
runoff components. First, we partitioned observed streamflow
into baseflow and surface runoff components using the Web-
based Hydrograph Analysis Tool (WHAT; [18]) using inbuilt
BFImax value (maximum value of long term ratio of base flow
to total streamflow) of 0.80 for perennial streams with porous
aquifers. We then constructed two SWAT models, one for
baseflow and the other for surface runoff.

In the baseflow model, we manually adjusted different pa-
rameters to match the baseflow trend (not magnitude) by com-
paring GW_Q (groundwater contribution to streamflow) with
observed baseflow. All parameters for Magnolia River water-
shed from [42] mentioned in Table 1 were applied such as
REVAPMN, which is the threshold depth of water in the shal-
low aquifer for percolation to the deep aquifer to occur, and
ALPHA_BF which is the baseflow recession constant and in-
dicates the groundwater flow response to changes in recharge.
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figure, the magnitude of observed
flow is many times larger than the
SWAT simulation
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A separate calibration was carried out for the surface runoff
component of observed streamflow. This calibration was done
using SWAT-CUP software with 13 parameters concerned with
both groundwater and surface water components (Table 2).
Groundwater parameters where also considered in this calibra-
tion, but this does not affect actual baseflow estimates whose
calibration was undertaken using a separate model. Three iter-
ations of 500 simulations each were conducted to get calibrated
parameter ranges and the values for the best simulation.

Finally, a regression relationship between the simulated
baseflow, calibrated for trend, and observed baseflow was
used to get final baseflow estimates that were calibrated for
both trend and magnitude. This was added to the calibrated
surface runoff component to get total calibrated streamflow.

3.2 Approach 2—Adjusting RCHRGE_DP to Allow
for Groundwater Discharge

In this approach, we evaluated the parameter RCHRGE_DP
for its role in removing surface water by percolation to the
deep aquifer. The default value of this parameter (fraction) is
set to 0.05, and its range extends between 0 and 1—a positive
RCHRGE_DP indicates shallow aquifer losses to the deep
aquifer. However, in certain cases, the deep aquifer may re-
charge the shallow aquifer, which can be addressed by
assigning a negative value to RCHRGE_DP. To the best of
our knowledge, adapting SWAT model for deep aquifer re-
charge to shallow aquifers as a strategy for simulating upwell-
ing groundwater discharge to shallow aquifers has not been

explored for the circumstances surrounding the watershed
evaluated in this study (Fig. 3). As described earlier, if the
fraction βdeep is made negative, this implies a flow from the
deep aquifer into the shallow aquifer since wdeep will be neg-
ative which in turn increases wrchrge,sh allowing for higher
baseflow contribution from the shallow aquifer to enter the
reach.

In this approach of streamflow calibration, we first manu-
ally manipulated SWAT parameters to ensure some match
between the simulated and observed flows, following which
we used SWAT-CUP to complete the calibration. Like in the
previous approach, parameters from [42] were first applied
following which GW_DELAY was reduced to 1 and
ALPHA_BF_D was changed to 0. Instead of a 2-step calibra-
tion like the previous approach, we changed RCHRGE_DP to
− 13 (rounding off coefficient from Eq. (8)). In order for this to
work, ranges in the ArcSWAT database should be changed
before applying negative RCHRGE_DP values in the model.
We then used SWAT-CUP to further calibrate the model using
three iterations of 500 simulations each.

3.3. Approach 3—ANN-SWAT Coupling

To improve upon any limitations from prior calibrations,
previously calibrated streamflow from approach 2 was fed
into ANN together with daily precipitation and PET as inputs
(Fig. 4). Due to the small calibration dataset (249 data points)
and to maintain consistency with the different approaches, we
used all of the data for training (or calibration) alone. Through

SWAT baseflow

SWAT flow

SWAT flow

Baseflow calibration by

(a) adjusting SWAT 

parameters to match trend, 

and (b) regression to match 

magnitude

Surface runoff calibration 

by adjusting SWAT 

parameters to match trend 

and magnitude
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streamflow 
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Approach 3

Calibrated streamflow
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• Land use
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Fig. 4 The figure represents the three calibration approaches used in this
study. In approach 1, baseflow and surface flow components are
calibrated separately and then summed to get calibrated streamflow. In
approach 2, calibration is done by specifically tweaking the deep recharge

parameter to allow for groundwater recharge into the system. In approach
3, ANN and SWAT are coupled to improve calibrated streamflow
predictions
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trial-and-error, the ANN model with one hidden layer, 8
nodes, and a log-sigmoid transfer function was used to cali-
brate streamflow.

4 Results

4.1 Approach 1

On comparing observed baseflow and surface runoff with that
simulated by ArcSWAT (Figs. 5 and 6), we observed that
surface runoff matched “satisfactorily” (R2 = 0.59, ENASH =
0.44, RBIAS = − 0.55), which was not the case for baseflows
which greatly differed in magnitude or the match was “unsat-
isfactory” (R2 = 0.28, ENASH = − 5.6, RBIAS = − 0.93). So, we
then constructed two SWAT models: one for baseflow and the
other for surface runoff.

The parameters which were critical in matching baseflow
trend were GW_DELAY which is the time required for water
leaving the bottom of the root zone to reach the shallow aqui-
fer and RCHRGE_DP which is the deep aquifer percolation
fraction. GW_DELAY was decreased to 1 day to mimic the
high permeability of sandy soils in the coastal plain area where
flow from the root zone to the aquifer is rapid [5]. We also
decreased ALPHA_BF_D, which is the alpha factor for

groundwater recession curve of the deep aquifer, from the
default value of 0.01 (1/day) to 0. RCHRGE_DP (i.e., βdeep)
was set to 0 (from default value of 0.05) which prevents per-
colation loss to the deep aquifer. Trends of simulated and
observed baseflows now yielded a good match (R2 = 0.72;
Fig. 7). The relationship between observed baseflow and sim-
ulated baseflow, calibrated for trend, can be described using a
linear regression relationship as

y ¼ 13:247x−0:003;R2 ¼ 0:72 ð7Þ

where y is the observed baseflow (m3/s) and x is the
ArcSWAT-simulated trend-calibrated baseflow (m3/s). Since
the intercept was not significant at α = 0.05 (p = 0.48), we
used a regression equation with zero intercept as

y ¼ 12:894x;R2 ¼ 0:72 ð8Þ

This was used to magnify and determine calibrated
baseflow estimates which had a “very good” match with ob-
served baseflow (R2 = 0.72, ENASH = 0.72, RBIAS = 0.00).

Calibrated parameter ranges and values for the best simu-
lation for the surface runoff component are presented in
Table 3. The best simulation from this calibration had a
“good” match with observed surface runoff (R2 = 0.72,
ENASH = 0.62, RBIAS = − 0.5). ArcSWAT-calibrated
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streamflow was calculated as the sum of calibrated baseflow,
estimated using regression Eq. (8), and calibrated surface run-
off, which yielded a “good” match with that of the observed
streamflow (R2 = 0.74, ENASH = 0.67, RBIAS = − 0.15; Fig. 8).
While this approach resulted in a decent calibration, a look at
the flow exceedance curve (Fig. 8) shows that flows > 0.08
m3/s are slightly but consistently underpredicted.

4.2 Approach 2

Calibrated parameter ranges are presented in Table 4. The best
streamflow simulation matched well with observed
streamflow, and the 95PPU enveloped 84% of the observa-
tions (P-factor = 0.84, R-factor = 1.04, R2 = 0.78, ENASH =
0.75, RBIAS = − 0.03; Fig. 9). From the flow exceedance curve
in Fig. 9, it can be observed that the hydrograph is mostly well

preserved, except for low flows (< 0.1 m3/s) which are slightly
underestimated.

4.3 Approach 3

If accurately predicting low flows is an important concern,
then the previous approach is slightly lacking (flow
exceedance curve in Fig. 9). Following approach 3, predicted
flows had “very good”match with observed flows (R2 = 0.89,
ENASH = 0.89, RBIAS = − 0.012; Fig. 10). Coupling SWAT
calibration with ANN in this hybrid approach much improved
streamflow calibration compared to the previous approaches
discussed in the study. From the flow exceedance curve in Fig.
10, all aspects of the hydrograph are well estimated and the
previously observed limitation of low flow underestimation
has been resolved.
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Fig. 7 Comparisons between
observed baseflow and SWAT-
simulated baseflow after
manually calibrating the trend.
Here SWAT baseflow trend was
adjusted to match observed
baseflow. On average, observed
baseflow is about 13 times
simulated baseflow. Hence,
simulated baseflow was manually
magnified by using the regression
relationship between observed
and simulated baseflow. This
calibration procedure is described
in approach 1

Table 3 Final parameter ranges and the fitted values for the best
simulation resulting from SWAT-CUP auto-calibration with observed
stormflow

Parameter_Name Fitted_Value Min_value Max_value

1: r__CN2.mgt 0.015 − 0.015 0.121

2: v__ALPHA_BF.gw 0.690 0.418 0.812

3: v__GW_DELAY.gw 0.362 0.001 2.527

4: v__GWQMN.gw 21.741 5.071 24.614

5: v__GW_REVAP.gw 0.199 0.134 0.200

6: v__ESCO.hru 0.842 0.796 0.887

7: v__CH_N2.rte 0.224 0.191 0.352

8: v__CH_K2.rte 32.122 0.010 43.114

9: v__ALPHA_BNK.rte 0.884 0.549 0.986

10: r__SOL_AWC(..).sol − 0.151 − 0.240 0.048

11: r__SOL_K(..).sol 0.014 − 0.116 0.370

12: r__SOL_BD(..).sol − 0.809 − 0.855 − 0.173

13: v__RCHRG_DP.gw 0.006 0.001 0.284

v__ means the existing parameter value is to be replaced by a given value

a__ means a given value is added to the existing parameter value

r__ means an existing parameter value is multiplied by (1+ a given value)

Table 4 Final parameter ranges and the fitted values for the best
simulation resulting from SWAT-CUP auto-calibration with observed
flow, and assigning negative values for RCHRGE_DP

Parameter_Name Fitted_Value Min_value Max_value

1: r__CN2.mgt 0.285 0.126 0.421

2: v__ALPHA_BF.gw 0.082 0.001 0.173

3: v__GW_DELAY.gw 0.563 0.001 3.104

4: v__GWQMN.gw 41.312 25.939 43.589

5: v__GW_REVAP.gw 0.094 0.026 0.101

6: v__ESCO.hru 0.952 0.916 0.985

7: v__CH_N2.rte 0.144 0.125 0.254

8: v__CH_K2.rte 131.781 85.332 142.185

9: v__ALPHA_BNK.rte 0.386 0.232 0.740

10: r__SOL_AWC(..).sol − 0.435 − 0.441 − 0.068

11: r__SOL_K(..).sol 0.241 − 0.098 0.442

12: r__SOL_BD(..).sol 0.029 − 0.217 0.134

13: v__RCHRG_DP.gw − 15.293 − 19.559 − 13.066

v__ means the existing parameter value is to be replaced by a given value

a__ means a given value is added to the existing parameter value

r__ means an existing parameter value is multiplied by (1+ a given value)
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Sometimes process-based models, through advanced phys-
ical understanding of the system, can allow for model calibra-
tion up until a certain point beyond which the model faces
difficulties improving calibration, perhaps due to system com-
plexity and our limited understanding thereof. The use of
ANN allows further attempts at improving calibration without
delving into the process details. Thus, ANN serves as a tool to
improve upon deficiencies observed in SWAT-simulated (and
SWAT-CUP calibrated) flows.

5 Discussion and Conclusions

In this study, we explored different options for calibrating a
very small head watershed in Alabama’s coastal plain region
draining into a headwater slope wetland which feeds Owen’s
bayou and eventually, Wolf Bay. This watershed exhibited
unique characteristics most notably that flows exceeding
precipitation—total precipitation and flows for the study peri-
od were 1726 mm and 6599 mm respectively—potentially
due to high amounts of groundwater discharging to the water-
shed. In general, models such as SWAT despite their capabil-
ities show limitations in modeling surface and groundwater
interactions, which may be redeemed by using SWAT in

conjunction with groundwater models such as MODFLOW.
However, this comes with the added cost of increased com-
plexity, heavy data requirements, technical expertise, and
computing prowess. Moreover, this level of integrated model-
ing may not be appropriate for the case at hand where very
limited data are available and the watershed size is too small to
warrant the use of very complex integrated models. In this
study, we evaluated the use of SWAT to tackle calibration of
this groundwater-fed head watershed system with minimal
observed data.

The three approaches evaluated for calibration had
“good” to “very good” performance with ENASH > 0.66.
In the first approach, baseflow and stormflow components
were calibrated separately and summed to yield total
streamflow: ArcSWAT-simulated baseflow trend was
matched to that observed and then manually amplified to
the observed magnitude using a regression relationship be-
tween trend-matched baseflow and observed baseflow. The
second approach involved adapting SWAT to reverse deep
aquifer losses and simulate upward recharge to the shallow
aquifer. This was done by attributing a negative value to
the parameter RCHRGE_DP, which controls loss of sur-
face water to the deep aquifer by percolation, to allow for
recharge and discharge into streamflow instead. The
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Fig. 8 Top plot compares
observed flow and SWAT-
calibrated flow from calibration
approach 1. Here SWAT flowwas
calibrated in two parts—(1) the
trend of simulated baseflow was
first matched to observed
baseflow, following which a
regression equation between
trend-matched simulated
baseflow and observed baseflow
was applied to match the
magnitudes and (2) SWAT
streamflow was calibrated to
observed surface runoff—and
then (1) and (2) were summed.
From the figure, the magnitude of
observed flow has “very good”
match with the SWAT simulation
(ENASH = 0.67). Bottom plot
compares the flow exceedance
curves for observed and simulated
flows
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calibrated range for this parameter from the SWAT-CUP
calibration ranged from − 13 to − 20. The second approach
yielded an improved model performance. Whether and
how changing the value of RCHRGE_DP so far outside
its range affects other aspects of streamflow and nutrient
dynamics is unknown and worthy of future investigation.
However, if hydrology calibration is the ultimate goal of
the study, then tweaking RCHRGE_DP in this manner is a
useful strategy to be aware about. Although this approach
may appear trivial, there is no published literature evaluat-
ing this approach to the best of our knowledge.

In this study, we further attempted to improve hydrology
calibration through the application of ANN in conjunction
with SWAT. Feeding calibrated streamflow from SWAT to-
gether with precipitation and PET to the ANN model resulted
in a much improved performance with ENASH of 0.88. Using
ANN together with SWAT in this hybrid approach has the
advantage of better calibration by letting ANN deal with

complexities that we have less knowledge about and cannot
be modeled, while also incorporating a process-based hydro-
logical understanding of the system through the SWATmodel.
The limitation of using a constant groundwater discharge, es-
timated using the first two approaches, should be recognized
in future model runs as groundwater discharge may change in
time due to regional groundwater dynamics. Moreover, a good
model calibration does not necessarily guarantee a satisfactory
model validation or prediction. We acknowledge our limita-
tions in model validation given the very short study period.
While ANN could be a useful calibration tool, its capability in
hydrologic model validation and prediction deserves further
investigation. Nevertheless, we reiterate that this study is
intended as a demonstration of three calibration approaches
that one might employ without advocating for one over the
other—rather the choice of calibration approach and its mod-
ification thereof is left to the user based on the study system at
hand.
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Fig. 9 Top plot includes SWAT-
CUP results for calibrating total
streamflow using the approach
that assigns a negative value for
RCHRGE_DP parameter.
Performance, in this case, was
“very good” with ENASH = 0.75.
This is described in calibration
approach 2. Bottom plot
represents the comparison of flow
exceedance curves for the “best
simulation” from SWAT-CUP
calibration and observed flow
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The study watershed is located at an elevation of 4 to 15 m
above mean sea level where depth to water table is probably
lower than 1.2 m below ground surface [23]. In parts of the
Graham Creek Nature preserve immediately south of the
study watershed, the water table was found to be as close as
12 inches below the ground surface (personal communication
with Preservemanager). This indicates that high baseflows are
natural to the system. However, baseflows may be still higher
than natural conditions due to some upland contribution from
an impounded lake in the residential area just upstream of the
wetland.

Most headwater streams in Alabama originate from
headwater slope wetlands [27, 37]. However, these sys-
tems are highly imperiled due to pressure from various
land use activities such as transportation, construction,
poorly planned residential and commercial developments,
and channel excavation, among others [27, 37]. These
headwater slope wetlands, impacted to varying degrees
by modifications to hydrological regimes and connectivity,
will also exhibit differences in functioning along a gradient
of land use pressure. Documenting existing hydrological

trends of headwater slope wetlands and providing tools
for hydrology calibration provides a very valuable tool
for understanding impacts of watershed land use on wet-
land function, thus aiding in the understanding, protection
and preservation of these systems. This study adds to that
body of knowledge and gives managers useful tools for
hydrology calibration in groundwater dominated wetlands
when accurate predictions of hydrology are necessary.
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Fig. 10 Top plot compares ANN-
simulated flow using SWAT-
calibrated flow, precipitation, and
PET as inputs, with observed
inflow. This combination SWAT–
ANN calibration yielded superior
performance compared to using
just SWATwith ENASH = 0.88.
This is described in calibration
approach 3. Bottom plot
compares flow exceedance curves
for SWAT–ANN predicted flow
and observed flow
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